
Advanced Engineering Techniques for Large Web Player Games

Johannes Scharl

• Founded as Production Company,

Development Studio since 2010

• Offices:
• Vienna, Austria

• Frankfurt, Germany

• >20 employees and freelancers

Cliffhanger Productions

2

3

Jagged Alliance Online

• Turn based, tactical browser game

• State of the art 3D graphics

• > 100 unique missions

4

Jagged Alliance 2 Jagged Alliance Online

Development conditions

• Client developed for Unity 3.x Web Player
• Has to look good on latest hardware

• Must be playable on low-end laptops/netbooks

• Game server in .NET (C#) 4.0

• 14 months development:
• 6 programmers

• 6 designers

• 3 artists

5

Web Player Client

Game + AI Server Cloud

Challenges 1/2

• Organize codebase:
• About 100.000 lines of logic code, > 1.000 classes

• Share code between Unity client and game server

• Unit tests

• Manage huge amounts of content:
• >10.000 assets, 100 scenes, various game data

• Importing costs a lot of time

• Minimize download size + optimize performance

6

Challenges 2/2

• Create regular deployments for QA, reviews

• Daily testing in browser

• Builds have to be available fast

• Manual build is complicated and error-prone

• Light map baking takes a lot of time

7

Approaches

• Coming up in the next 45 minutes:

1. Visual Studio, Unity and multiple libraries

2. Client/server code sharing

3. Unit testing and continuous integration

4. Splitting Unity projects into smaller ones

5. Reliable and fast automated build process

including distributed light map baking

6. Optimizing graphics performance

8

• Visual Studio is a great tool

for C# Unity development

• VS solution synced automatically,

BUT:
• All scripts in single project and namespace

• Changes in solution or project overwritten

• Not possible to split project into multiple

libraries!

 1 Visual Studio and Unity

9

1 Why multiple libraries per Solution?

• Breaks codebase into smaller pieces

• Encapsulate certain responsibilities

• Decouple functionality from implementation

• Makes code easily reusable!

10

Cliffhanger.JAO.sln

Cliffhanger.JAO.csproj

Assets

Src

Networking

GameClient.cs

GameLogic

Mercenary.cs

Cliffhanger.JAO.sln

Cliffhanger.JAO.Networking.csproj

GameClient.cs

Cliffhanger.JAO.GameLogic.csproj

Mercenary.cs

References

Cliffhanger.JAO.Networking

1 Custom Visual Studio Solution

• Custom solution outside of Unity asset folder

• Organize classes into multiple libraries in solution

and according folders in asset structure

• Some even outside of asset folder (Unit Tests…)

• Namespaces work (except for MonoBehaviours)

• Debugging still possible in MonoDevelop

11

1 Custom Visual Studio Solution

12

Unity Root Folder

Cliffhanger.JAO.Client.sln

Assets

Source

Cliffhanger.JAO.Networking

Cliffhanger.JAO.Networking.csproj

Client

GameClient.cs

Cliffhanger.JAO.GameLogic

Cliffhanger.JAO.GameLogic.csproj

Characters

1 Problems with custom VS solutions

• AssemblyInfo.cs generated for each library

• Class name conflicts in Unity

• Compiled dlls are created in project subfolder

• Again: class name conflicts in Unity

• Solution: compile dlls to UnityRoot\Temp folder

13

2 Server/Client Code Sharing

• Parts of code and logic same as on server

• Game data definitions (weapon strength, armor…)

• Damage calculations, path finding, action points

• Game server developed in C# 4.0

• How to share code without duplicating it?

float CalcAccuracy(IShooter,
ITarget, IWeapon)

AccuracyCalculator

Shows accuracy when
aiming at target

Client GUI

Based on hit accuracy

Server Damage Calculation

14

2 How to share code?

• Move shared code to VS project in Unity folder

• Target framework .NET 3.5 (Unity compatible)

• Can be used in 4.0 applications!

• Add shared project to server solution

• Or: single solution for server + client!

15

Unity Root Folder

Assets

Source

Cliffhanger.JAO.ClientServerShared

Cliffhanger.JAO.ClientServerShared.csproj

AccuracyCalculationCliffhanger.JAO.Client.sln

Cliffhanger.JAO.Server.sln

3 Unit Testing your Unity Project

• What is unit testing all about?

• A method to test „individual units of source code“

• In OOP, a unit = interface or class

• Each class is tested separately by multiple test

cases to verify functionality

• Test boundary cases that seldom occur in game

• Expose found bugs in tests to reproduce them

16

3 How do Unit Tests work?

17

3 Unit Testing your Unity project

• „Why would I do that, unit testing is hard and

tedious?“

• Unit tests reduce bugs

• Ideal code examples = documentation

• Tests show when functionality has been broken

• Improves design – decoupled code easier to test

• Think about the test while implementing code

• Even better: prior to implementation!

18

3 How are Unit Tests executed?

• Tests are written in frameworks like NUnit

• Regularly tested using Continuous Integration

19

3 Test code that uses Unity Objects?

• Unity objects can‘t be used outside of Unity!

20

Runs SharpUnit tests

3 How test code depending on Unity?

• Our solution: modified SharpUnit framework
(http://www.unifycommunity.com/wiki/index.php?title=SharpUnit)

• Allows to write tests very similar to NUnit

• Can be run from Continuous Integration

21

Continuous Integration

 1) Builds client solution

Unity TestRunner Tool

 Starts Unity:
"Unity.exe -batchmode -quit -nographics -
executeMethod ProjectFolder

EditorTestRunner.RunTestsFromCommandLine"

 2) Starts UnityTestRunner

If tests failed:
EditorApplication.Exit(1);

Copies Unity editor log as CI artefact,
returns exit code of Unity process

 3) Displays results and
 Unity editor log file

http://www.unifycommunity.com/wiki/index.php?title=SharpUnit

3 Unit testing - Advice

• Test as much code as possible with NUnit!

• If not possible: code depends on Unity classes

• Decouple logic code from Unity dependencies

• Easier to test and reuse!

22

void PlayAnimation();

CharacterComponent :
ICharacterComponent

ICharacterComponent component;
component.PlayAnimation();

Movement Logic Class

void OnMouseOver
(InteractionBehavior source);

Interaction Logic Class

 public void OnMouseOver()
 interactionLogic.OnMouseOver(this);

InteractionBehavior : MonoBehaviour

4 Splitting up Unity projects

• Hundreds of assets created/modified per day

• Programmers update and import them

• Our solution: Split up Unity project

• Source project: code and resources

• Asset project: all static assets and levels

23

4 Splitting up Unity projects

JAO-Content

Assets

Models

Textures

Prefabs

Scenes

militarybase

warehouse

beach

Asset Project
contains static models,

textures, levels

JAO-Source

Assets

Resources

Source

GameLogic

AssetBundles

Source Project
contains game code, runtime
assets, levels as asset bundles

militarybase.unity3d

warehouse.unity3d

beach.unity3d

Asset Bundle
Export

4 Advantages of multiple projects

• Less overhead for updating and importing assets

• Initial download smaller, no levels or static assets

• Forces developers to decouple code from scenes

• Shared code should be minimal

25

4 Splitting up Unity projects

• What to do with Code used in both projects?

• Custom components on objects used in code

• Solution: move components to separate library

• Copy compiled dll to both projects

• post build event

ExternalSource

SourceContentShared

SourceContentShared.csproj

JAO-Content

Assets

Source

SourceContentShared.dll

JAO-Source

Assets

Source

SourceContentShared.dll

26

5 Deploying Jagged Alliance Online

• Deployments needed daily for QA and reviews

• Deployment consists of many

different parts

• Some solve this with a

10h+ manual routine

• We don‘t.

27

5 Deployment: Challenges

• Problem 1: Exporting Levels

• Bake light map + exporting asset bundle: 1h/level

• 100+ levels = 100h = 4 days!

• Problem 2: Stability

• Unity started in headless mode from CI (TeamCity)

• Asset project: >7GB

• Occasionally freezes or crashes

• Needs to be fail-safe

28

5 Basic deployment process

• Idea: Distribute deployment

• Build agents run on multiple machines

• Export levels from a list in parallel

• Can easily be scaled up

• Failed exports are repeated

• Final web player build step

• Compiles web player

• Collects asset bundles and balancing data

29

Final Build Step

BuildAssetAgent

Listens to commands,
starts Unity

BuildAssetAgent

Listens to commands,
starts Unity

BuildAssetAgent

Listens to commands,
starts Unity

5 Basic deployment process
BuildAssetCommander

Places a build command for each
level at network share (xml file)

Bakes light map,
exports level as asset

bundle

Bakes light map,
exports level as asset

bundle

Bakes light map,
exports level as asset

bundle

Deploy Game and AI
Servers

Build Unity
Web Player

Copy Game Data and
Asset Bundles

Commit asset bundle

Repeated if failed

BuildAssetAgent
listens to share

Exports level and light map

Repeated 3x if failed

5 Deployment Implementation

31

 Custom Deployment Tool

 1) Update from repository Update

 2) Build client solution MSBuild

 3) Distributed asset bundle
 build

 BuildAssetCommander
places scene info on share

 4) Update from repository Update

 5) Build and deploy server MSBuild

 6) Deploy web player client

 7) Copy server, client, asset
 bundles, game data to
 output directory

MSBuild

5 Can this process be optimized?

• Building 100 maps still takes a long time

• Not all of them change every day

• Detecting changes automatically is difficult

• Our solution: level blacklist

32

5 Level Deployment Blacklist

• List is saved as XML, used by Build Asset Commander

33

5 What about quickly available Builds?

• Nightly build great for daily tests, but:

• Fast solution necessary for milestones

• Should run locally on one machine

• Manually triggered deployment process

• No light map baking

• Select steps to build and deploy

34

File with name of last
deployed level

5 Manual triggered Deployment

• Same technology as automatic deployment

• Asset bundle export step different

35

 Default asset bundle build
 UnityRunnerTool
 1) Starts Unity with a list
 of levels to export Exports level as asset bundle

 2) Listens to file changes

 3) Stop Unity if it hangs
 (too long since last export)

Resume after last
successful level

6 Graphics Performance

• Biggest challenge:

• Game should look great on cutting edge hardware

• Game must perform well on low-end laptops

36

6 Great graphics, but slow hardware?

• Our approach: Extended quality levels

• 3 configurations triggering Unity quality levels:

Good, Beautiful & Fantastic

• Different rendering paths (Forward/Deferred)

• Toggle layers and effects

37

Fantastic

Rendering Path Deferred

Shadows Hard + Soft

Shadows

High Resolution

Lights 20 Pixel Lights,

Mood Lights

Anti Aliasing 2x

Particle Effects 

Decals 

Water High Quality Prefab

Normal Maps 

Post Processing 

Detonator Quality 1.0

Fantastic Beautiful

Rendering Path Deferred Deferred

Shadows Hard + Soft

Shadows

High Resolution

Hard Shadows Only

Medium Resolution

Lights 20 Pixel Lights,

Mood Lights

5 Pixel Lights

no Mood lights

Anti Aliasing 2x 

Particle Effects  

Decals  

Water High Quality Prefab High Quality Prefab

Normal Maps  

Post Processing  

Detonator Quality 1.0 0.5

Fantastic Beautiful Good

Rendering Path Deferred Deferred Forward

Shadows Hard + Soft

Shadows

High Resolution

Hard Shadows Only

Medium Resolution

No Shadows

Lights 20 Pixel Lights,

Mood Lights

5 Pixel Lights

no Mood lights

Vertex Lights only

no Mood Lights

Anti Aliasing 2x  

Particle Effects   

Decals   

Water High Quality Prefab High Quality Prefab Low Quality Prefab

Normal Maps   

Post Processing   

Detonator Quality 1.0 0.5 0.0

6 Quality Levels

38

6 Low End: Dual Core Netbook, 20fps

39

6 High End: Quad Core, 8800 GT, >60fps

40

Thank you for your attention!

Questions?

Johannes Scharl

jscharl@cliffhanger-productions.com

